

Vehicle History Report

VEHICLE DETAILS

Chassis number 1: LN109-0002357

Manufacture date: 1995-08

Make: TOYOTA

Model: HILUX

Body: KB-LN109

Grade: SSR-X W-CAB

Engine: 3L

Deregistered to Title information ²: **Export Accident / Repair:** No problem Odometer No problem rollback: Manufacturer **Problem found** recall: No data Safety grade ³: Contamination No problem risk:

This vehicle does not qualify for Buyback Guarantee

4WD

F5

Average Market Price

Drive:

Transmission:

Unfortunately, this vehicle does not qualify for our Buyback Guarantee program.

¥1,310,000

About Buyback Guarantee

This CAR VX Vehicle History Report is based only on Information supplied to CAR VX, LTD and available as of 2020-09-29 14:29:26. Other information about this vehicle, including problems, may not have been reported to CAR VX, LTD. Use this report as one important tool, along with a vehicle inspection and test drive, to make a better decision about your next used car.

ACCIDENT / REPAIR HISTORY

Problem type	Reported	Date reported	Data source	Details	Airbag
Collision	Not reported				
Malfunction	Not reported				
Theft	Not reported				
Fire damage	Not reported				
Water damage	Not reported				
Hail damage	Not reported				

ODOMETER READINGS HISTORY

Date reported	Data source	Odometer reading (Km)
2017-08-24	MLIT	161900
2018-08-28	MLIT	169500
2019-05-08	MIRIVE	174933

USE HISTORY

Use in the contaminated regions ⁴ Radioactive contamination test fail ⁵ Commercial use

Not reported

Not reported

Not reported

DETAILED HISTORY

Event date	Location	Odometer reading (Km)	Data source	Details
1995-08			TOYOTA	Manufactured
1995-08			MLIT	First registration
2017-08-24		161900	MLIT	Inspection
2018-08-28		169500	MLIT	Inspection
2019-05-08	Saitama	174933	MIRIVE	Auctioned

2019-05-20 Chiba MLIT Last registration

MANUFACTURER RECALL HISTORY

Date reported	Data source	Affected part	Details
2004-10-26	MLIT	Steering link mechanism	The strength of the relay rod of the steering system is insufficient, to continue frequent long term use the steering force of the operation or the like stationary steering of the steering wheel increases when there is a crack occurs. Therefore, cracks progresses Continued use intact, in the worst case, the relay rod has Ruosore such can not be broken and the steering.

VEHICLE ASSESSMENT •

Overall Collision Safety Ratings

Driver's seat		Front passenger's seat			
Points I	Evaluation	Goal average	Points	Evaluation	Goal average

^{*} In order to accurately differentiate between the evaluations of different vehicles, a standard is set based on current technology. Up to 6 points out of 12 is given level 1 and the rest of the range is divided up into equal parts, which are respectively assigned to level 2 (more than 6 points but 7.5 or less), level 3 (more than 7.5 points but 9 or less), level 4 (more than 9 points but 10.5 or less) or level 5 (more than 10.5 points).

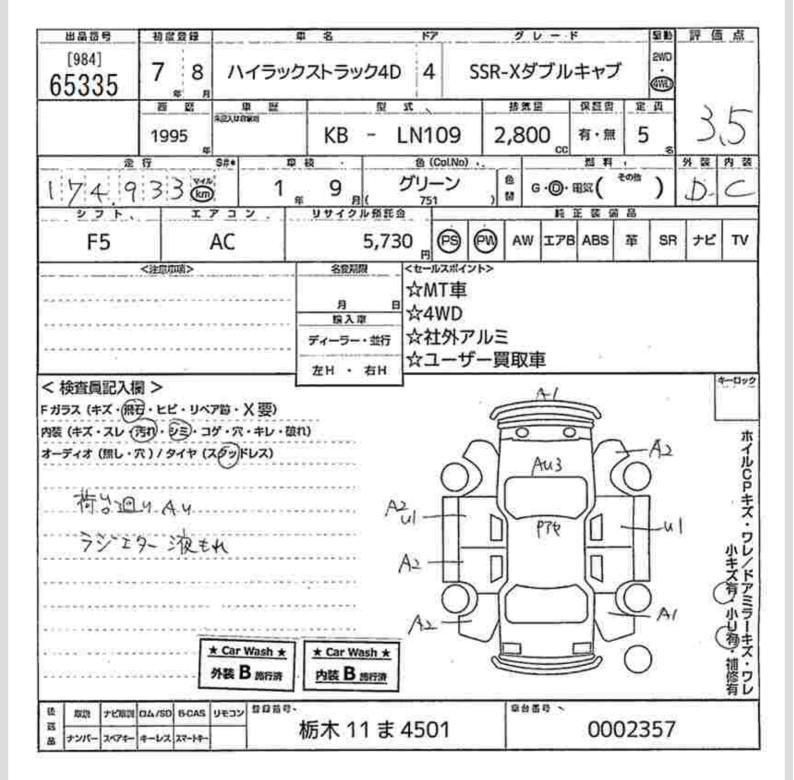
Braking performance tests ⁷

Dry road

Wet road

VEHICLE SPECIFICATION

1st gear ratio	2nd gear ratio
3rd gear ratio	4th gear ratio
5th gear ratio	6th gear ratio


Additional notes		Airbag position, capacity	
Body rear overhang		Body type	PICKUP TRUCK
Chassis number embossing position		Classification code	22
Cylinders	4	Displacement	2779cc
Electric engine type		Electric engine maximum output	
Electric engine maximum torque		Electric engine power	
Engine maximum power	91ps(67kW)/4000rpm	Engine maximum torque	19.2kg·m(188.3N· m)/2400rpm
Engine model	3L	Frame type	
Front shaft weight	1040	Front shock absorber type	
Front stabilizer type		Front tires size	255/70R15LT
Front tread	1475	Fuel consumption	
Fuel tank equipment	65	Grade	SSR-X W-CAB
Height	176	Length	506
Main brakes type		Make	ТОҮОТА
Maximum speed		Minimum ground clearance	
Minimum turning radius	6.1m	Model	HILUX
Model code	KB-LN109	Mufflers number	
Rear shaft weight	700	Rear shock absorber type	
Rear stabilizer type		Rear tires size	255/70R15LT
Rear tread	1470	Reverse ratio	
Riding capacity	5	Side brakes type	
Specification code	7739	Stopping distance	
Transmission type	F5	Weight	1740
Wheel alignment	4WD	Wheelbase	2855
Width	179		

AUCTION DATA

Date: 2019-05-08, Auction: MIRIVE, Lot #: 65335

Date:	2019-05-08	Lot #:	65335
Auction name:	<u>MIRIVE</u>	Region:	Saitama
Make:	TOYOTA	Model:	HILUX PICK UP
Reg. year:	1995	Mileage (km):	174933
Displacement (cc):	2800	Transmission:	F5
Color:	GREEN	Model code:	LN109
Result:	sold	Auction grade:	3.5
Problem type:	No problem	Problem scale:	None
Contaminated:	No	Airbag:	ОК

PHOTOS AND AUCTION SHEETS

GLOSSARY

¹ Chassis number – a unique identification number of the vehicle in Japan (same as VIN in the USA or Europe)

² Title information:

Registered – qualified for driving in Japan

Deregistered Temporarily – not qualified for driving in Japan, usually a temporary title during the ownership change

Deregistered Completely – not qualified for driving in Japan, the vehicle is determined to be scrapped Deregistered to Export – not qualified for driving in Japan, the vehicle is determined to be exported

³ Determining the overall collision safety performance evaluation – For the driver's seat, the results of the full-wrap frontal collision test, offset frontal collision test, and side collision test are added together and evaluated to 6 different levels. For the Frontal passenger's seat, the results of the full-wrap frontal collision test and the side collision test (results for the driver's or the front passenger's seat are used) are added together and evaluated to 6 different levels.

Regular vehicle inspection – All vehicles in Japan must undergo regular vehicle inspections (shaken). New cars need to be tested after three years, and then vehicles must be tested every two years thereafter. A vehicle inspection (shaken) is compulsory for all vehicles with an engine size over 250cc. It ensures that all vehicles on the road are properly maintained and safe to drive. The test also checks that vehicles have not been illegally modified; if they are found to have been modified, they are not allowed on the road.

- ⁴ Use in the contaminated regions The Fukushima Daiichi nuclear disaster was a catastrophic failure at the Fukushima I Nuclear Power Plant on 11 March 2011, resulting in a meltdown of three of the plant's six nuclear reactors. As a result, some areas in the following prefectures were contaminated: Fukushima, Miyagi, Ibaraki, Tochigi.
- ⁵ Radioactive contamination test radioactive contamination inspection that was started in July 2011 as a preventive measure for exporting contaminated vehicles from Japan. The inspection is being conducted since in all sea ports of Japan under the supervision of The Japan Harbor Transportation Association (JHTA).

MLIT - Ministry of Land, Infrastructure, Transport and Tourism.

- ⁶ Japan New Car Assessment Program the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and the National Agency for Automotive Safety & Victims' Aid (NASVA) have taken measures for safety, one of which is to assess commercially available vehicles through a variety of safety performance tests and release the resulting information compiled into the "New Car Assessment Program". The objective of Japan New Car Assessment Program is to increase the use of safe automobiles by providing an environment in which users can easily select such vehicles. This also promotes the development of safer vehicles by automobile manufacturers. Neck injury protection for rear-end collision performance test, rear seat passenger's protection for frontal collision performance test, rear passenger's seat belt usability evaluation test and seat belt reminder for passengers evaluation test are started in FY2009.
- ⁷ Braking Performance Tests Braking performance is determined by the shortness of the distance in which a vehicle can stop and the stability of the vehicle at the time of braking. This test is performed under wet and dry road conditions for a vehicle which has both a driver and a front passenger. The distance it takes for the vehicle to stop and the stability of the vehicle at the time of braking is evaluated for when the vehicle is stopped abruptly while traveling at a speed of 100km/h. The stopping distance and vehicle speed have been measured by using GPS since FY2009.

CAR VX, LTD DEPENDS ON ITS SOURCES FOR THE ACCURACY AND RELIABILITY OF ITS INFORMATION. THEREFORE, NO RESPONSIBILITY IS ASSUMED BY CAR VX, LTD OR ITS AGENTS FOR ERRORS OR OMISSIONS IN THIS REPORT. CAR VX, LTD FURTHER EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

© 2014-2020 Car VX Limited. All rights reserved.